Vitamin B6 Prevents Endothelial Dysfunction, Insulin Resistance, and Hepatic Lipid Accumulation in Apoe−/− Mice Fed with High-Fat Diet
نویسندگان
چکیده
Backgrounds. VitB6 deficiency has been associated with a number of adverse health effects. However, the effects of VitB6 in metabolic syndrome are poorly understood. Methods. VitB6 (50 mg/kg/day) was given to Apoe (-/-) mice with hkdigh-fat diet (HFD) for 8 weeks. Endothelial dysfunction, insulin resistance, and hepatic lipid contents were determined. Results. VitB6 administration remarkably increased acetylcholine-induced endothelium-dependent relaxation and decreased random blood glucose level in Apoe (-/-) mice fed with HFD. In addition, VitB6 improved the tolerance of glucose and insulin, normalized the histopathology of liver, and reduced hepatic lipid accumulation but did not affect the liver functions. Clinical and biochemical analysis indicated that the levels of VitB6 were decreased in patients with fatty liver. Conclusions. Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe (-/-) mice fed with HFD. Supplementation of VitB6 should be considered to prevent metabolic syndrome.
منابع مشابه
Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E.
Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that as...
متن کاملEvaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice
Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...
متن کاملEvaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice
Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...
متن کاملEzetimibe prevents the development of non-alcoholic fatty liver disease induced by high-fat diet in C57BL/6J mice
There is currently no established treatment for non‑alcoholic fatty liver disease (NAFLD), including its most extreme form, non‑alcoholic steatohepatitis (NASH). Ezetimibe, an inhibitor of Niemann‑Pick C1 Like 1‑dependent cholesterol absorption, improves diet‑induced hyperlipidemia and attenuates liver steatosis and insulin resistance. The aim of the present study was to determine whether ezeti...
متن کاملBardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.
High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 wee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016